吸声降噪原理与在空调系统上应用,利用吸声处理来吸收声能降低噪声的方法是噪声控制的主要措施之一。实践证明,经吸声处理后,室内混响声一般可降低5~10dB。吸声:声波通过媒质或入射到媒质分解面上时声能的减少过程,称为吸声或声吸收。一般采用吸声材料来降低室内的混响声,吸声按其机理可分为多孔性吸声材料、共振吸声结构及阻抗复合式吸声结构三大类。材料流阻低,低频吸声系数很低但中高频吸声系数高;高流阻材料与低流阻相比,高频吸声系数降低,低中频系数提高。运用降噪保温系统,居住环境更加安静舒适,不会受到外界噪音的干扰。苏州专业降噪保温系统批发价格
多孔吸声材料:构造特征:材料的孔隙率要高,一般在70%以上,多数达到90%左右;孔隙应该尽可能细小,且均匀分布;微孔应该是相互贯通,而不是封闭的;微孔要向外敞开,使声波易于进入微孔内部。两个重要条件:一是具有大量的、均匀的孔隙;二是孔之间要连通,表面向外敞开。多孔吸声材料衰减声能有两个原因:一是粘滞阻力耗能:当声波经过材料表面引起空隙内部空气振动时,空气与固体经络间产生相对运动。由于空气的粘滞性产生相应的粘滞阻力,使振动空气动能不断转化成为热能,从而使声波能量衰减;二是热交换耗能:声波通过时发生空气绝热压缩升温,与多孔材料的热交换和热传导也衰减声能。苏州专业降噪保温系统批发价格安装降噪保温系统后,室内环境更加安静,有利于居民的休息和放松。
蒸汽管道疏水消音降噪系统结构的优化。根据蒸汽管道疏水消音降噪技术工作原理,优化消音降噪系统组成部分的结构尺寸和形状。优化后的系统主要由喷吹管、扩容降压腔、控流降噪腔组成。喷吹管选用ф25mm无缝钢管,长度根据现场实际情况确定,厚度3mm;扩容降压腔主体选用ф108mm无缝钢管作为内层管,长度800mm,厚度4mm;控流降噪腔主体选用中219mm无缝钢管作为外层管,长度700mm,厚度5mm;外层管两端采用86mm钢板既作为钢管封头端盖,也作为消音降噪系统的支脚。喷吹管从内层ф108mm钢管的端面86mm端盖中心插入。
冷却塔振动噪声控制,机械通风冷却塔隔振系统。冷却塔振动控制主要是阻隔振动的传播途径。而冷却塔的安装往往是将冷却塔固定在承重地梁上,之间均为硬联接。在冷却塔承力结构的立柱下设置隔振器,隔振系统的承载力为单个隔振器承载力之和。由于冷却塔隔振系统安装后更换隔振器会造成很大的困扰,应适当降低隔振器的许用应力,降低隔振器的单个荷载,增加隔振器的数量,以提高使用的安全性。冷却塔消声系统的特点,由于冷却塔所用轴流风机风压低风量大,其有效风量和整体散热效果对消声系统的阻力损失极为敏感。当冷却塔出风口消声装置压降较大时,会增加冷却风扇的阻力,导致风量减少,水温上升,结果对原系统热工性能产生影响。为减少对原系统的热工性能影响,就必须减少对轴流通风机系统的进排风的气体压力损失;适当加大进、出风有效截面积,将消声器中的气流速度设计在5m/s以下。节能降噪保温系统同时降低能源消耗和噪音,实现可持续发展。
焊接前要详细制订焊接工艺方案,焊接时严格执行焊接规范,确保焊接质量。特别注意的是施焊前焊条要烘烤,必须经150-200℃左右烘干1.5~2h,烘干后放入保温筒中保温,随用随取。焊件需要预热,施焊前用氧一乙炔焰对焊件进行预热至45~50℃。焊接时每层厚度控制在0.5~1mm之间,层间要及时清理焊缝上的熔渣和缺陷,焊缝高度控制在2~3mm。其三是气密性打压试验。制作完成后按规范进行的气密性打压试验,严禁出现微裂纹、渗水等缺陷。隔音门的密封条需要定期检查,如有损坏需要及时更换。苏州降噪保温系统公司
隔音板通常由吸音材料和隔音层组成,可以有效吸收和隔离噪音。苏州专业降噪保温系统批发价格
冷却塔噪声控制措施,声屏障,声屏障就是在声源与受声点之间插人一个设施,用以隔断并吸收声源到达受声点的直达声波,使部分声波受阻反射,部分声波则经吸收衰减后通过屏体透射(极小)和屏顶绕射等附加衰减形式到达受声点,达到减轻受声点的噪声影响、取得降噪效果的目的。隔声屏障的隔声原理、在于它可以将高频声反射回去,使屏障后形成“声影区”,在声影区内噪声明显降低。对低频声,由于绕射的结果,隔声效果较差。如果在隔声屏障朝向声源的一面加铺吸声材料,并尽量使屏障靠近声源,则会提高降噪效果。落水阻尼降噪,落水消能降噪声装置主要由“支承构架”及“落水阻尼降噪垫”组成。“支承构架”又可分为漂浮式及固定式二种形式。使用落水阻尼降噪垫,在冷却塔落水撞击水面之前,使落水先在降噪装置上经无声擦贴、粘滞减速、挑流分离、疏散洒落等消能形式的过渡,取得消减落水冲击噪声的治理效果。小型无动力冷却塔可使用简易的一般材料,如凹凸海绵设置在水面上,也可取得较好的阻尼降噪效果。苏州专业降噪保温系统批发价格
文章来源地址: http://jzjc.chanpin818.com/gncl/bwgrcl/deta_22949783.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。