在振荡平面中观察)两个内部块围成楔形的主流通道103。两个内部块11a、11b彼此的**小间距(或者说b103)原则上位于内部块11a、11b的上游端部处。由于半径119a、119b,**小间距(b103)稍微向下游移动,库尔勒板式热交换站报价。主流通道103在其**窄部位的宽度b103大于入口101的宽度bin。主流通道103的形状尤其通过块11a、11b的指向内(朝向主流通道103)的表面110a、110b形成,所述表面基本上垂直于振荡平面延伸。由指向内的表面110a、110b围成的角度在此称为γ。指向内的表面110a、110b可以具有(轻微的)曲率,或可以通过一个或多个半径、多边形和/或一个或多个直线形成,或通过它们的混合形式形成。在副流通道104a、104b的入口104a1、104b1处设有弯部形式的分离器105a、105b(进入流动室)。从流动的角度看,分离器是凸起。在此,在每个副流通道104a、104b的入口104a1、104b1处,弯部105a、105b在副流通道104a、104b的圆周边缘的部段上突出到每个的副流通道104a、104b中,库尔勒板式热交换站报价,并且在所述位置改变其横截面形状,从而减小横截面面积。在图1中,如此选择圆周边缘的部段,使得每个弯部105a,库尔勒板式热交换站报价、105b(此外还)朝向入口101(基本上平行于纵轴线a取向)。根据应用情况,分离器105a、105b可以不同地取向或还可以完全省略。
所述间距t311小于沿热交换体3的流动室303的深度t303的湍流器333的扩展尺寸t333。图6示出热交换设备5的实施方式,其中,根据冲击流动方法实现热交换。在此,热交换体3或其表面304e(例如从外部)由从流体部件1中流出的流体流2入流,以便引起热交换体3的温度变化。为此,流体部件1被设置成距表面304e一定间距。流体部件1的纵轴线a与表面304e围成不等于零的入流角β。所述入流角β在图6中*是示例的。流体部件1的出口102设置成距表面304e的间距为i14。在此,沿基本上垂直于表面304e延伸的轴线定义间距i14。推荐地,间距i14是流体部件1的出口102的宽度bex的至少两倍大。在具有穿孔喷嘴作为流体流源的热交换设备的情况下,在冲击流方法中,所述间距i14必须至少为出口102的宽度bex的五倍。因此,在相同的传热性能的情况下,如果使用流体部件替代多孔喷嘴作为流体流源,可以减小构造空间(热交换设备5的体积)。在图7的实施形式中,热交换也根据冲击流动方法实现。热交换体3包括由多个限界壁界定的流动室303,在图7中示出多个限界壁中的三个限界壁。三个限界壁的面向流动室303的表面带有附图标记304f、304g、304h。示例地,热交换设备5包括三个流体部件1作为流体流源。然而。
对于每个波动表面部分:沿着与预定方向对齐的波动表面部分的***边缘,热交换表面的轮廓根据***横波而变化,***横波具有与预定方向相对应的行进方向;沿着与预定方向对齐的波动表面部分的第二边缘,热交换表面的轮廓根据第二横波而变化,第二横波具有与预定方向相对应的行进方向;并且在位于***边缘和第二边缘之间的波动表面部分的中间部分处,热交换表面的轮廓根据第三横波而变化,第三横波具有与预定方向相对应的行进方向;其中,第三横波与***横波和第二横波中的至少一者相比具有不同相位、不同振幅和不同频率中的至少一者,以在波动表面部分中提供一个或多个v形脊或谷。在一个示例中,提供了一种制造热交换器的方法,其包括:形成多个流体流通道;流体流通道中的至少一个流体流通道包括至少一个热交换表面,该至少一个热交换表面包括沿着通道长度的至少一部分延伸的至少一个波动表面部分;其中,对于每个波动表面部分:沿着与预定方向对齐的波动表面部分的***边缘,热交换表面的轮廓根据***横波而变化,***横波具有与预定方向相对应的行进方向;沿着与预定方向对齐的波动表面部分的第二边缘,热交换表面的轮廓根据第二横波而变化。
文章来源地址: http://jzjc.chanpin818.com/jcscjgj/deta_4000338.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。